Power Assoc. of Northern California

Climate Change (and energy bills) The Problems are the US and China A Partial Solution is California

Arthur H. Rosenfeld, Commissioner
California Energy Commission
(916) 654-4930
ARosenfe@Energy.State.CA.US

http://www.energy.ca.gov/commission/commissioners/rosenfeld.html

Nuclear Physics

A Course Given by ENRICO FERMI at the University of Chicago. Notes Compiled by Jay Orear, A. H. Rosenfeld, and R. A. Schluter

How Much of The Savings Come from Efficiency?

- Easiest to tease out is cars
 - In the early 1970s, only 14 miles per gallons
 - Now about 21 miles per gallon
 - If still at 14 mpg, we'd consume 75 billion gallons more and pay
 \$225 Billion more at 2006 prices
 - But we still pay \$450 Billion per year
 - If California wins the "Schwarzenegger-Pavley" suit, and it is implemented nationwide, we'll save another \$150 Billion per year
- ◆ Commercial Aviation improvements save another \$50 Billion per year
- Appliances and Buildings are more complex
 - We must sort out true efficiency gains vs. structural changes (from smokestack to service economy).

How Much of The Savings Come from Efficiency (cont'd)?

◆ Some examples of estimated savings in 2006 based on 1974 efficiencies minus 2006 efficiencies

	Billion \$
Space Heating	40
Air Conditioning	30
Refrigerators	15
Fluorescent Tube Lamps	5
Compact Floursecent Lamps	5
Total	95

- Beginning in 2007 in California, reduction of "vampire" or stand-by losses
 - This will save \$10 Billion when finally implemented, nation-wide
- ◆ Out of a total \$700 Billion, a crude summary is that 1/3 is structural, 1/3 is transportation, and 1/3 is buildings and industry.

A supporting analysis on the topic of efficiency from Vice-President Dick Cheney

- ◆ "Had energy use kept pace with economic growth, the nation would have consumed 171 quadrillion British thermal units (Btus) last year instead of 99 quadrillion Btus"
- ◆ "About a third to a half of these savings resulted from shifts in the economy. The other half to two-thirds resulted from greater energy efficiency"

Source: National Energy Policy: Report of the National Energy Policy Development Group, Dick Cheney, et. al., page 1-4, May 2001

Cheney could have noted that 72 quads/year saved in the US alone, would fuel one Billion cars, compared to a world car count of only 600 Million

Energy Intensity -- California and the United States

Per Capita Electricity Sales (not including self-generation) (kWh/person)

Carbon Dioxide Intensity and Per Capita CO2 Emissions -- 2001 (Fossil Fuel Combustion Only)

Per Capita Electricity Consumption

Source: http://www.eia.doe.gov/emeu/states/sep_use/total/csv/use_csv

Per Capita Electricity Consumption

Impact of Standards on Efficiency of 3 Appliances

Source: S. Nadel, ACEEE,

in ECEEE 2003 Summer Study, www.eceee.org

New United States Refrigerator Use v. Time

New United States Refrigerator Use v. Time and Retail Prices

Source: David Goldstein

New Refrigerator Energy Use: 71% will be saved when stock completely turns over to 2001 Standards

Annual Energy Saved vs. Several Sources of Supply

Value of Energy to be Saved (at 8.5 cents/kWh, retail price) vs. Several Sources of Supply in 2005 (at 3 cents/kWh, wholesale price)

United States Refrigerator Use, repeated, to compare with Estimated Household Standby Use v. Time

Comparison of 3 Gorges to Refrigerator and AC Efficiency Improvements

三峡电量与电冰箱、空调能效对比

Annual Energy Savings from Efficiency Programs and Standards

Annual Peak Savings from Efficiency Programs and Standards

Illuminating Space vs. the Street

Figure 8
Comparison of EE Program Costs to Supply Generation Costs

California IOU's Investment in Energy Efficiency

Critical Peak Pricing (CPP) with additional curtailment option

Potential Annual Customer Savings:

10 afternoons x 4 hours x 1kw = 40 kWh at 70 cents/kWh = ~\$30/year

Tariffs being Tested in California Pilot

Demand Response, Retail Pricing Pilot, and Advanced Metering Infrastructure

- ◆ CPUC and CEC have been testing the impact of "CPP" (Critical Peak Pricing) on demand
 - Two summers of tests (\$10 M experiment).
- Results for residential customers
 - 12% reduction when faced with critical peak prices and no technology
 - 30% to 40% reduction for customers with air conditioning, technology, and a critical peak price.
- ◆ PG&E and SDG&E will install advanced meters soon

CPP rates – Load Impacts

Residential Response on a typical hot day Control vs. Flat rate vs. CPP-V Rate

(Hot Day, August 15, 2003, Average Peak Temperature 88.5°)

Source: Response of Residential Customers to Critical Peak Pricing and Time-of-Use Rates during the Summer of 2003, September 13, 2004, CEC Report.

Fraction of Customers on CPP Rates with Lower bills in 2004 and 2005- Residential and Small Commercial

Customer Acceptance of CPP rates

Residential participants express a strong interest in having dynamic rates offered to all customers.

Source: Webster, et. al, Science Vol. 309

